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Target-reflector neutronics should provide us with energy 

and spatial distribution of the neutrons in the proximity of 

the spallation target. The time distribution is not essential 

for a continuous source and will not be considered in this 

paper. These investigations are usually performed with Monte- 

Carlo codes, e.g. HETC. A "black box" application of such codes 

may however be dangerous, involved 

and time consuming, especially for parametric studies. We 

therefore prefer some preparatory investigations preceding 

the application of the Monte-Carlo codes. This preparation 

consists of an educated guess as a first step, followed by 

a one-dimensional diffusion calculation furnishing physical 

insight into trends of parametric behaviour. In this paper 

we shall present a few typical examples related to the project 

of the SIN-spallation neutron source. 

II Inelastic Moderation of Evaporation Neutron Spectra in 

a Heavy Metal Target. 

21 Neutron Multiplication due to (n, 2nl-Reactions in a 

Beryllium Reflector. 

31 Neutron Multiplication due to Fast Fission in a Depleted 

Uranium Target. 

The basic geometry in all these examples is quite simple: a 

cylinder-target embedded into cylindric moderators and 

reflectors. Where ever available, we use experimentai data 

as input describing the nuclear physics in the target. 
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11 Inelastic Moderation of Evaporation Neutrons 

al Energy Loss of Evaporation Neutrons 

Let I(ul be the macroscopic inelastic cross section for neutron 

scattering depending on the lethargy U. 

AUI = Ui - Ui-l are the group intervals 

f("', u-u'1 is the scattering probability for an inelastic nuclear 

scattering. shifting the neutron lethargy from u', + u. The group 

cross section Sk+' 1 is then defined by 

Ek +i = 1 
*"k 

JUk Z(u'l du' Jui f("'. u-u') du 

"k-l "i-l 

(1) 

The first integral represents the average inelastic cross 

section f (kl of neutrons in group k. The second one expresses 

the probability P (k;il of scattering into group i. These data 

are available for several possible target and reflector 

materials'). In order to obtain an idea of the moderating 

power of different materials we have calculated the energy transfer 

Ek+i = (Cb-Eil f (kl P (k+il (21 

and particularly the average energy loss for neutrons from 

different relevant groups 

$j (Ek) = ZN 
i=k+l 

[ik-Eil i (kl P (k-ril [MeV/cm] (31 

Sk or rather dE/dx (En) is shown in Fig. 1 for Pb, Be, C and 02 

in the energy interval 1 to 15 MeV. For the light elements the 

energy loss due to elastic scattering alone is also indicated. 

c 
13 5 7 10 12 15 En(MeVI 

Fig. 1 

Stopping power of evaporation neutrons in 

various target and reflector materials 

We see that lead has the highest stopping power 

among all these moderators for neutrons 

with En > 4 MeV. Since the average energy of the primary spectrum 

of evaporation neutrons is somewhat larger than 4 MeV and the 

absorption cross section is low, even down to thermal energies, 

lead is a good moderator for such hard spectra. The same is 

certainly also true for bismuth. Furthermore the self-shielding 

property of lead and bismuth for y-rays is obvious. 

The moderation property of lead should be considered also in 

the interpretation of spectra measured at the bare target. Even 

if the primary evaporation spectrum is strictly isotropic, this 

isotropy will be destroyed in a thick target by inelastic 

moderation. Hence angular dependence of the evaporation part of 

the neutron spectra will be observed21. 
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In order to obtain a quantitative idea on the distortion of the 

spectrum we carried out the following transport calculation. 

We start with an evaporation spectrum 

W[EI = 5 E1/2 C-E/T 
T3/2 

with T = 2.6 MeV 
(41 

Transport of (41 through 1.3 cm of lead reproduces fairly well the 

leakage spectrum from a lead target with R = 1.3 cm obtained by 

Monte-Carlo method3). This spectrum is already deformed and cannot 

be described anymore by (41. With the one-dimensional ANISN-code 

we transport this spectrum through (infinitly long) lead cylinders 

of various radii. The calculation is done in Se-approximation 

considering PO,P1 -scattering and 15 energy groups. We assumed a 

rectangular beam profile with 5 cm diameter. The leakage spectra 

for targets with radii RT = 5 and 10 cm are shown in Fig. 2. 

The moderation by the extra 5 cm-layer of lead is evident. The 

spectral content for energies En > 4 MeV is roughly halved. 

The average energy drops from 2.66 MeV to 2.06 MeV. 

From Fig. 1 we realize that this softer spectrum is now most 

efficiently moderated further by beryllium. Since many neutrons 

are still above the (n,2nl-reaction threshold (E > 2.7 MeVl we 

expect moreover some multiplication of neutrons in a Be-sleeve. 

21 Neutron Multiplication in a Beryllium Reflector 

In this chapter we would like to estimate the neutron multi- 

plication due to (n,2nl reactions in a Be-sleeve. 

al Geometry - Average Chord Length 

In Fig. 3 the geometry of the target-sleeve arrangement is shown. 

The chord length S(p,@l averaged over target cross section ahd 
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2 Fig. 

Leakage spectra 

from a lead target 

with 5.0 and IO cm 

radius 

all plane directions 6 is for r/R = l/2 

S = 1.12 r (51 

where r is the target radius and R the radius of the Be-sleeve. 

For the estimate of the average path length in the beryllium 

we refer tu Fig:. 3;. FOi simp?icity x8 3ssL'r7z 2 disk-90urCei 

6 cm behind the target front face. From Rh-foil measurements 

on the surface of a lead target, we know that this is the 
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3 Fig. 

Sketch of the target 

beryllium sleeve geometry 

position of maximal source strength for a 590 MeV proton beam. 

This is indeed a very rough approximation, but one may realize 

that the average path length is not very sensitive to this 

position and therefore also not to the exact source distribution. 

W,ith a macroscopic scattering cross-section g we obtain for the 

(no scattering1 escape probability 

PO = 

$TXlX 

/ 
$min 

expl-S[R-rl 51 d(sin$l 
- 
r 

Omax 
I d(sin$l 

(El 

$min 

The cross sections used in this formula should be averaged over the 

leakage spectrum from the corresponding target. We shall use here 

the spectrum from a IO cm lead target (590 MeV protons1 measured 

under 90' by time-of-flight technique at SIN*) (Fig. 41. 

E= 2MeV U*" fission 

E=4,3MeV F%IEp=590MeVJ 
thick target cblOcm 

MeV 

Fig. 4 

Experimental TOF- 

spectrum of evapor- 

ation neutrons from 

a 10 cm diameter 

lead target, pro- 

duced by a 590 MeV 

proton beam. For 

comparison a 235U- 

fission spectrum is 

also shown. 

i ii lb 15- 

According to chapter 1 this is the angular region with the hardest 

leakage spectrum. The multiplication figures we shall obtain, will 

therefore be somewhat overestimated. 
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D20 / 

The following values are obtained: 

Fig. 5 

Schematic target- 

containment-reflector 

arrangement for the 

proposed SIN-neutron 

source (we still 

believe in a carbon 

or beryllium con- 

tainment for the lead- 

bismuth eutecticum). 

Xtot = 0.25 cm-’ PO = 0.17 

5: Cn.Znl 2 o 23 icelast. 
= 0.77 

&otl i(totl 

The collision probability is therefore 83 %. 

bl Multiplication Tree 

We follow now the neutrons a few collision generations through the 

Be-sleeve. We simplify this process with the help of two 

assumptions 

il First flight and first elastic collision lead to a 

homogeneous neutron distribution; 

ii) After two elastic collisions the neutrons are scattered 

below the (n,Znl threshold. 

The first assumption gives us the possibility to use, after the 

first collision the escape probabilities tabulated in 

Case et al.41. For r = 5 cm and R = IO cm - PC = 0.65. If 

assumption ii) is valid we can stop the procedure after the 

second generation. We obtain the following result: If a neutron 

leaves the t,arget with an energy above (n,Znl threshold the 

probabilities of events in beryllium are 

Escape (E > 2.7 MeVl 0.39 

Escape degraded [E < 2.7 MeVl 0.32 

(n.Znl 0.29 

Since 60 % of all evaporation neutrons in our spectrum are above 

(n,Zn)-threshold we obtain an increase of source strength by 

beryllium of 17 %. 

We expect of course that the efficiency of a beryllium sleeve 

depends strongly on the hardness of the leakage neutron spectrum. 

Indeed if we consider the Monte-Carlo spectrum 31 of LA-4789 from 

lead, which is softer [E = 3.25 MeVl we obtain the following 

situation 

Escape (E > 2.7 NeVl 

Escape degraded (E < 2.7 NeVl 

(n,Znl 

drops 

increases 

roughly the same 

Since in this spectrum only 32 % of the source neutrons are above 

threshold the multiplication efficiency decreases to < IO %. 

We therefore meet a competitive situation between target 

thickness and efficiency of neutrons muitipiicatiun in Thea 

beryllium sleeve. Let us analyze this situation with a 

corresponding diffusion calculation in the one-dimensional 

cylindrical geometry sketched in Fig. 5. The calculation starts 
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with a primary evaporation spectrum (41 with the same nuclear 

temperature (T = 2.6 MeVl and proceeds with nine energy groups. 

The results are shown in Table I. 

Table I 

Material. Thickness (cm) Total Leakage Flux at 

Pb Be C OZC 
of Thermal Outer C- 
Neutrons per I Surface 
Source Neutron 

10 0 6 90 0.634 0.172 

7.5 2.5 6 90 0.704 0.204 

5 5 6 90 0.776 0.239 

1 0 5 6 85 0.651 0.172 

7.5 5 6 67.5 0.712 0.203 

5 5 6 90 0.776 0.239 

In the first part of Table I we recognize a 11 % increase of 

the total leakage of thermal neutrons per source neutron for 

extra 2.5 cm layers of beryllium. The thermal flux at the outer 

carbon surface rises somewhat stronger, indicating the more 

efficient moderation by berylllium compared to lead. This would 

not necessarily be the case, if we had chosen a harder source 

spectrum. 

In the second part of Table I we have just added 5 cm Be-layers 

to targets of various thicknesses. Compare now the flux at the outer 

carbon surface of the two parts in the Table, e.g. 10 cm target 

and 0 and 5 cm Be respectively. We recognize that the gain in 

source strength due to 5 cm beryllium approximately compensates 

the flux corresponding radial drop in the 020 reflector; This is 

certainly only valid in the proximity of the source. 

We have also verified a smaller gain due to the beryllium sleeve 

by interchanging the carbon with the beryllium layers in this 

geometry. dbviously the neutron spectrum entering into the 

beryllium becomes too soft in the carbon for an efficient (n,Znl- 

gain. 

dN,(51 

dg 
+ N,.,(5) = \N,,-I& 1 (91 

Not5 I = e-5 for an exponen tially attenuated beam. The general 

solution is 
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31 Neutron Multiplication Due to Fast Fission in a Depleted 

Uranium Target - 

Since we want to consider the finite length of the target in this 

subject, we should first obtain an idea on the longitudinal distri- 

bution of the source of primary spallation neutrons. Concerning 

these primary neutrons we do not distinguish between evaporation- 

and fission neutrons from spallation isotopes. We are inter- 

ested here in the multiplication of the source neutrons by 

their internuclear cascade in a thick uranium target. We treat 

the longitudinal source distribution by a cascade model of 

Barbier et a1.51. 

al Longitudinal Cascade Model 

Let N,(,) be the number of fast cascade nucleons produced in 

nth generation at depth Z. The total number of cascade nucleons is 

N(z) = Z N,(z) z> 0 (71 
n 

The longitudinal cascade is ruled by the following equation: 

dN,[zl = A-'MnNn_,(sldz - X-'N,(zldz [61 

where 

Mn : multiplicity for creation of fast cascade nucleons 

x : A/N,~o*p(cml relaxation length in the target material. 

Using the relaxation length as length unit [t = z/Al we obtain 

for (81: 



n 

N,(L) = IT” 5 e-5 
M 

with A = II M 
n i=l " 

(101 

From experiments at thin heavy metal targets we know that 

600 MeV protons produce % 5 cascade nucleons. 10 % of them 

have an energy E > 300 MeV and are therefore still fertile for 

further cascade reactions. The multiplicity of fertile n.ucleon 

production in first generation is therefore MA = 0.5. We agree 

that the limit of 300 MeV for possible cascade mechanism is 

somewhat arbitrary. 

For a beam energy of 600 MeV. consideration of 1 to 2 generations 

is presumably enough - let us for simplicity consider one 

generation only. Then 

N(C) = e -5 (1+0.5 5) = e-elXeff Xeff > X (111 

The definition of x eff follows from [Ill. Since the nuclei, 

suffering cascade reactions, are left with high excitation energy 

which is radiated off by evaporation neutrons, we consider Xeff 

to be the parameters describing the longitudinal distribution 

of the primary neutron source. For lead and uranium we obtain 

Pb :a in c 1.7 b X = 17.6 cm leff 2 26.5 cm 

U 
in 

:a = 1.9 b X = 11.0 cm x 
eff 

2 ?7.6 cm 

bl First Collision Density 

We consider as primary neutron source an isotropic line 

source 

Q = Qo 
xz 

.-ziXeff 6~~) [I21 

The first collision density in a cylinder of radius R 

length Z is 

Z 

F(r,zl = & IR dpg(pl I de e-S"eff c 

oo 0 4s[(r-p12+(z-~)21 

exp(-C JCr-p12+[z-~]2) = +-Q Jz 
'0 

*ce-S'heff 

E 
expI-I r2+lz-~1 1 7 

.2+ (z-512 

The collision probability in the cylinder is 

R Z 
P = 2n J rdr / dzF(r.z) 

0 0 

a n d 

(131 

(141 

These expressions are very sensitive to the cross sections 

involved. We used spectrum averaged cross sections using the 

rather hard experimental spallation spectrum (E = 4 MeV) 

already quoted2]. 

<a> =Z[dN] * 
i dE i 

UCEiIAEi (15) 

N 

In Fig. 6 we show the spectrum weighted fission and (n,2n) cross 

section of 238Ll. It is readily seen that the high-energy tail of 

the spectrum contributes strongly to further neutron production by 

fast fission and (n,2nl reactions. We have now to integrate (13) 

and ( 41 using an averaged transport cross section 

<'th' 
= 5.34 b 

leadi n g to an average transport length ith = 3.Y cm. Tne 

S-integration in F (r,z) was obtained using an asymptotic expansion of 

the integrand.A closed approximate expression for F (r,z) followed. 
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Fig. 6 

Spectrum weighted 

fission and In,Znl 

cross section of 

depleted uranium. 

1 s io 15 

The collision probability P was obtained by evaluating the further 

integrals graphically. For an uranium target with a diameter of 

15 cm the following first collision probability resulted: 

p238u CR = 7.5 cm1 = 0.8 
E = 4 MeV 

cl Multiplication Tree 

(16) 

We use the terminology of reactor physics. The number of neutrons 

from one collision is 

vUf+Ue 
n=- 

'tr 
(171 

After n-collisions we have therefore (Pi : collision probability 

in ith generation]. 

PIP2 . . . P,?" (181 

fast neutrons. Of these ( l-P,+1 
escape 

ui 

G 

go below fission threshold 

Hence after the nth generation 

1 - P,+q + P n+q "i/atr = 1 - aP,+, (19) 

neutrons are not useful anymore for fission. Since the spallation 

neutrons with their hard spectrum are much more efficient for 

fission reactions than the fission neutrons themselfes, we have to 

distinguish these two species carefully in the averaging process. 

T.he relevant parameters are the following: 

Average over Average over 

Spallation Spectrum Fission Spectrum 

asp = 0.59 af = 0.43 

nsp = 0.80 

Pzep = 0.76 

P, = 0.8 

rlf = 0.52 

P2f = 0.70 

The first collision probability P., comes from the previous 

consideration. P2 is the collision probability for all the 

further generations assuming, as in the case of the beryllium 

sleeve, a homogeneous distribution of the neutrons in the 

cylinder 4). Following through three generations we obtain a multi- 

plication factor 

N = 1.45 Neutrons/Source Neutron (201 

The yield of source neutrons (that is from a thin target) is by 

a factor of 1.4 higher from uranium than from lead 61 . Hence 

Yield (Z38Ll) = 2 x Yield (Pbl (21) 
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The following critical remark is, however, appropriate. The high- 

energy tail of the spallation spectrum (E > 15 MeVl has not been 

considered. In view of the total cross sections at high-energy 

and the large neutron emission number v a higher yield ratio 

than (211 is expected. Scaling with the total cross section suggests 

an increase of the yield ratio up to 2.5 to 3.0. 

Conclusions 

The task of these investigations is twofold. Firstly, we 

hope that we figured out a few useful numbers. Secondly, 

and hopefully more important indeed, it has been shown that 

these old fashioned methods are still a valuable tool to get 

some insight into the physics behind the neutronics of the 

system. This understanding, together with the certainly 

approximate quantitative results, gives us the confidence to 

tackle these problems - and more involved ones - with the powerful 

Monte-Carlo codes most efficiently. 
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